SChain: A Scalable Consortium Blockchain Exploiting Intra- and Inter-Block Concurrency

Zhihao Chen, Haizhen Zhuo, Quanqing Xu, Xiaodong Qi, Chengyu Zhu, Zhao Zhang, Cheqing Jin, Aoying Zhou, Ying Yan, Hui Zhang

chenzh@stu.ecnu.edu.cn
Presented at VLDB 2021
Introduction

- Blockchain provides data integrity, traceability and immutability to tackle trust problems among mutually distrusting parties

- **Consortium blockchain** is being widely applied to support large-scale businesses in enterprise collaborations
As users and applications of blockchain proliferate, the system has to **scale** to provide more transaction processing.

1. exploit the parallelism of network, i.e **sharding**
2. enhance the capability of every **single participant**

Fig.1: Sharding technique

Cross-shard txn incurs **a large number of** intra- and cross-shard communications

Fig.2: Enhance single participant

Scale the consortium blockchain in terms of each participant **based on trust domain**
Background

To empower the individual participant

- Fabric incorporate concurrency
 - **High abort rates** for hotspot workloads
 - Enhanced works still inherits the limitations of serial validation

- ParBlockchain and BlockchainDB parallelize the execution
 - Allow non-conflicting transactions to execute in parallel

1. **Limited** to single peer
2. **Overlook** transaction parallelism **across** multiple blocks
SChain Overview

- **System Architecture**
 - **Scalable** order-execute-finalize (SOEF) paradigm
 - Hybrid trust and fault assumptions
 - Exploit **Intra-** and **Inter-Block** concurrency

Fig. 5: Scalable order-execute-finalize paradigm
SChain’s Intra-Block Concurrency

- **Multiple executors**
 - **Deterministic** concurrency control
 - Early read/write **keys** acquisition for Turing-complete smart contract
 - Guarantee the **merge** of execution result is **equivalent** to the predetermined serial order

defined by ordering phase

Transactions are executed **in parallel** among all executors

concurrently within a single executor

Organization 1

** Executor E₁
** Executor E₂
** Executor E₃

TXID: 1319
** R(Tₐ) = {{KeyA, Vₐ}}
** W(Tₐ) = {{(KeyA, Vₐ)}}

TXID: 1332
** R(Tₖ) = {{KeyA, KeyB}}
** W(Tₖ) = {{(KeyA, Vₖ)}}

TXID: 1385
** R(Tₙ) = {{KeyA, KeyC}}
** W(Tₙ) = {{(KeyC, Vₙ)}}

Fig.6: Intra-Block Concurrency
SChain’s Inter-Block Concurrency

- Pipelined workflow
 - **Interleave** workflows for different blocks
 -> no longer block-by-block quiescently
 - Explore the **inter-block concurrency**
 -> allow txns in later blocks to be executed **earlier**

Non-quiescent workflow ✔ **Inter-Block concurrency** ✔

Fully-utilized resources ✔
SChain’s Scalability

- **Ordering**:
 - Merely order the transactions
 - Concurrent instances (easily get a global order due to trust domain)

- **Execution**:
 - Devote more executors on demand

- **Finalization**:
 - Complexity of state partition
 - Expect to design a scalable storage

Fig. 8: SOEF paradigm
Conclusion and discussion

• We introduce **SChain**, a scalable consortium blockchain that scales transaction processing by exploiting intra- and inter-block concurrency.

• Future works
 ○ Design efficient cache maintenance to leverage data locality
 ○ Explore the scalable state storage
THANKS!